HW10 , Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let $p \geq 3$ be a prime integer. Prove that $x^{p-1}-x^{p-2}+x^{p-3}-\cdots-x+1 \in Z[x]$ is an irreducible polynomial.
(ii) Find a monic polynomial $d(X) \in Q[X]$ such that $Q[X] /(d(X))$ is ring-isomorphic to $K=Q(\sqrt{2}+\sqrt{3})$. What is $[Q(\sqrt{2}+\sqrt{3}): Q]$? [Hint : Let $X=\sqrt{2}+\sqrt{3}$. Then find $d(X)$ by working it backward!, so $X^{2}=5+2 \sqrt{6}$, hence $\left(X^{2}-5\right)=2 \sqrt{6}$ blabla.....]. Find a basis for $Q(\sqrt{2}+\sqrt{3})$ over Q.
(iii) Let F be a field, $d(X) \in F[X]$ of degree 3. Prove that $d(X)$ is irreducible over F if and only if $d(X)$ has no roots in F.
(iv) Prove that $x^{3}+9 x^{2}+5 x+1$ is irreducible over Q.
(v) Let $F \subset K$ be field extensions and $\alpha \in K$ be an algebraic number over F. Prove that every element in $F(\alpha)$ is an algebraic number. [Hint: Let $n=[F(\alpha): F]$ and let $a \in F(\alpha)$. We need to show that $f(a)=0$ for some $f(x) \in F[x]$. Consider the set $S=\left\{1, a, \ldots, a^{n}\right\}$. If the elements in S are not distinct, then find such $\mathrm{f}(\mathrm{x})!!!$ (easy!!). If the elements in S are distinct, then they are dependent since $\operatorname{ISI}>\mathrm{n}$. So ...it is easy now to find your $\mathrm{f}(\mathrm{x})$]
(vi) Let $F \subset K$ be field extensions and assume that $\alpha \in K$ be an algebraic number over F. Prove that α^{-1} is an algebraic number over F and $F(\alpha)=F\left(\alpha^{-1}\right)$. Assume that $f(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in F[x]$ is irreducible and $f(\alpha)=0$. Let $b=a_{0}^{-1}$. Prove that $g(x)=x^{n}+b a_{1} x^{n-1}+b a_{2} x^{n-2}+b a_{3} x^{n-3}+\ldots+b a_{n-1} x+b$ is irreducible over F. [Hint: What is $g\left(\alpha^{-1}\right)$?]
(vii) Let R be the field of all real numbers, and let $f(x)$ be a non-constant irreducible polynomial over R. Prove that $\operatorname{deg}(f)=1$ or 2 . [Hint: $R[i]=C$ and $[C: R]=\ldots]$
(viii) Let $F=Q(\sqrt[4]{3})$ and $K=F(\sqrt[6]{3})$. Find the unique monic irreducible polynomial, say $f(x)$, over F such that $f(\sqrt[6]{3})=0$. Find a basis for K over F .
(ix) Let $F \subset K$ be field extensions and assume that $a, b \in K$ be algebraic numbers over F. Assume that $f(x)$ is an irreducible polynomial over F such that $f(a)=f(b)=0$. Prove that $F(a)$ is ring-isomorphic to $F(b)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

