HW10, Math 531, Spring 2014

Ayman Badawi

- **QUESTION 1.** (i) Let $p \ge 3$ be a prime integer. Prove that $x^{p-1} x^{p-2} + x^{p-3} \cdots x + 1 \in \mathbb{Z}[x]$ is an irreducible polynomial.
- (ii) Find a monic polynomial $d(X) \in Q[X]$ such that Q[X]/(d(X)) is ring-isomorphic to $K = Q(\sqrt{2} + \sqrt{3})$. What is $[Q(\sqrt{2} + \sqrt{3}) : Q]$? [Hint : Let $X = \sqrt{2} + \sqrt{3}$. Then find d(X) by working it backward!, so $X^2 = 5 + 2\sqrt{6}$, hence $(X^2 5) = 2\sqrt{6}$ blabla....]. Find a basis for $Q(\sqrt{2} + \sqrt{3})$ over Q.
- (iii) Let F be a field, $d(X) \in F[X]$ of degree 3. Prove that d(X) is irreducible over F if and only if d(X) has no roots in F.
- (iv) Prove that $x^3 + 9x^2 + 5x + 1$ is irreducible over Q.
- (v) Let F ⊂ K be field extensions and α ∈ K be an algebraic number over F. Prove that every element in F(α) is an algebraic number. [Hint: Let n = [F(α) : F] and let a ∈ F(α). We need to show that f(a) = 0 for some f(x) ∈ F[x]. Consider the set S = {1, a, ..., aⁿ}. If the elements in S are not distinct, then find such f(x)!!! (easy!!). If the elements in S are distinct, then they are dependent since |S| > n. So ...it is easy now to find your f(x)]
- (vi) Let $F \subset K$ be field extensions and assume that $\alpha \in K$ be an algebraic number over F. Prove that α^{-1} is an algebraic number over F and $F(\alpha) = F(\alpha^{-1})$. Assume that $f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \in F[x]$ is irreducible and $f(\alpha) = 0$. Let $b = a_0^{-1}$. Prove that $g(x) = x^n + ba_1x^{n-1} + ba_2x^{n-2} + ba_3x^{n-3} + \ldots + ba_{n-1}x + b$ is irreducible over F. [Hint: What is $g(\alpha^{-1})$?]
- (vii) Let R be the field of all real numbers, and let f(x) be a non-constant irreducible polynomial over R. Prove that deg(f) = 1 or 2. [Hint: R[i] = C and [C : R] = ...]
- (viii) Let $F = Q(\sqrt[4]{3})$ and $K = F(\sqrt[6]{3})$. Find the unique monic irreducible polynomial, say f(x), over F such that $f(\sqrt[6]{3}) = 0$. Find a basis for K over F.
- (ix) Let $F \subset K$ be field extensions and assume that $a, b \in K$ be algebraic numbers over F. Assume that f(x) is an irreducible polynomial over F such that f(a) = f(b) = 0. Prove that F(a) is ring-isomorphic to F(b).

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com